
1 Software Assurance Forum, September 2010

Software Assurance Forum, September 2010

Architecting Systems to
Meet Customer

Expectations - Managing
Expectations, Trade

Decisions, and Assurance-
Related Risk

Paul R. Croll
Fellow

CSC
pcroll@csc.com

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 2 2 Software Assurance Forum, September 2010

Outline

• The Systems Quality Challenge

• Architecture And Quality Defined

• Quality Characteristic Based Approaches To Architecting Systems

• Making The Case For Architectural Quality

• Customer Implications Of Quality Characteristic Based Architectural
Approaches

• Process Maturity And Product Quality

• A Current Concern: Architecting For System Assurance

• Summary

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 3 3 Software Assurance Forum, September 2010

It’s About The Architecture . . .

• One of the top ten emerging systemic issues, from fifty-two in-depth
program reviews since March 2004, was inadequate software
architectures

Source: D. Castellano. Systemic Root Cause Analysis. NDIA Systems
Engineering Division Strategic Planning Meeting, December, 2007.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 4 4 Software Assurance Forum, September 2010

It’s Also About Quality . . .

• The NDIA Top Software Issues Workshop examined the current most
critical issues in software engineering that impact the acquisition and
successful deployment of software-intensive systems

• Two issues emerged that were focused specifically on the relationship
between software quality and architecture:
– Ensure defined quality characteristics . . . are addressed in requirements,

architecture, and design.

– Define software assurance quality characteristics that can be addressed
during architectural trade-offs

Source: G. Draper (ed.), Top Software Engineering Issues Within Department of Defense
and Defense Industry. National Defense Industrial Association, Arlington, VA, August 2006.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 5 5 Software Assurance Forum, September 2010

The Systems Quality Challenge

• If we are to be successful in delivering systems that meet customer
expectations, we must:
– Start as early as possible in the design process to understand the extent to

which those expectations might be achieved

– Develop candidate system architectures and perform architecture trade-offs

– Define and use a set of quantifiable system characteristics tied to customer
expectations, against which we can measure success

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 6 6 Software Assurance Forum, September 2010

The Systems Quality Challenge Is a Software Quality Challenge

• Most systems we encounter today contain software elements and most
depend upon those software elements for a good portion of their
functionality

• Modern systems architecture issues cannot be adequately addressed
without considering the implications of software architecture

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 7 7 Software Assurance Forum, September 2010

Architecture Defined

• The fundamental organization of a system
embodied in its components, their relationships
to each other, and to the environment, and the
principles guiding its design and evolution.

• The set of all of the most important, pervasive,
higher-level, strategic decisions, inventions,
engineering trade-offs, assumptions, and their
associated rationales concerning how the
system meets its allocated and derived product
and process requirements
Source: D. Firesmith, P. Capell, D. Falkenthal, C. Hammons, D. Latimer, and T.
Merendino. The Method-Framework for Engineering System Architectures (MFESA):
Generating Effective and Efficient Project-Specific System Architecture Engineering
Methods, 2008.

Source: IEEE 1471-2000, IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems. The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 2000.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 8 8 Software Assurance Forum, September 2010

Quality Defined

• Software quality: The degree to which software possesses a desired
combination of characteristics.

• Software product quality: The totality of characteristics of an entity that
bear on its ability to satisfy stated and implied needs.

Source: IEEE Standard 1061-1992. Standard for a Software Quality Metrics
Methodology. New York: Institute of Electrical and Electronics Engineers, 1992.

Source: ISO/IEC 9126-1: Information Technology - Software product quality -
Part 1: Quality model. ISO, Geneva Switzerland, 2001.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 9 9 Software Assurance Forum, September 2010

Quality Characteristic Based Approaches To Architecting Systems

• Developing systematic ways to relate the software quality characteristics
of a system to the system’s architecture provides a sound basis for
making objective decisions about design tradeoffs and enables engineers
to make reasonably accurate predictions about a system’s characteristics
that are free from bias and hidden assumptions. The ultimate goal is the
ability to quantitatively evaluate and trade off multiple software quality
characteristics to arrive at a better overall system.

Source: M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock.
Quality Attributes, CMU/SEI-95-TR-021. Software Engineering
Institute, Carnegie Mellon University, December 1995.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 10 10 Software Assurance Forum, September 2010

A Quality Characteristic Approach to System and Softwar e
Engineering Trades
• A quality characteristic based approach to system

and software engineering trades ensures that:
– Customer quality requirements will have been distilled

into drivers which will have shaped the system
architecture and design.

– Tradeoffs will have been made to optimize the realization
of important quality characteristics, in concert with
customer expectations.

– The level of confidence that the resultant system will
meet those expectations will be known.

– Customers will be knowledgeable of any residual risk
they are accepting by accepting the delivered system.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 11 11 Software Assurance Forum, September 2010

Quality Requirements as Drivers in the Engineering Life Cycle

• Customer requirements for the system, defining
the system’s quality requirements, set the
expectations for the system. It is against these
quality requirements that engineering trades
will be made.

• Applicable laws, regulations, and other
contractually-obligated governance set the
constraints bounding the engineering this trade
space.

• Internal policies, procedures, and standards
institutionalize external governance requirements
(as well as business best practices) and drive the
engineering processes for producing systems
and software
– Internal quality reviews will generally include

reviews of conformance of a project’s engineering
processes to these established policies,
procedures, and standards.

• Engineering processes produce the product
by trading off internal governance
requirements along with customer quality
requirements, to facilitate optimization among
quality characteristics and compliance with
external governance requirements.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 12 12 Software Assurance Forum, September 2010

Relationships Between Quality Characteristics

• Collaboration
– Increasing the degree to which one characteristic is realized increases the

realization of another

• Damage
– Increasing the degree to which one characteristic is realized decreases the

realization of another

• Dependency
– The degree to which one characteristic is realized, is dependent upon the

realization of at least some sub-characteristics of another

Source: X. Franch and J. Carvallo. “Using Quality Models in
Software Package Selection”, IEEE Software, pp. 34-41. New
York: Institute of Electrical and Electronics Engineers, 2003.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 13 13 Software Assurance Forum, September 2010

Optimization Among Quality Characteristics

• Example: A large telecommunication application
– Good optimization (Collaboration)

• balance among multiple quality characteristics, such as maintainability, performance and
availability

– Poor optimization (Damage)
• Focusing solely on maintainability often results in poor system performance

• Focusing on performance and availability alone may result in result in poor
maintainability

• Explicit architectural decisions can facilitate optimization among quality
characteristics

Source: D. Häggander, L. Lundberg, and J. Matton, “Quality Attribute
Conflicts - Experiences from a Large Telecommunication Application,”
Proceedings of the Seventh International Conference on Engineering
of Complex Computer Systems (ICECCS’01), New York: Institute of
Electrical and Electronics Engineers, 2001.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 14 14 Software Assurance Forum, September 2010

Understanding Quality In The Context Of Architectur al
Structures
• Structures for describing architectures

– Functional structure is the decomposition of the functionality that the system
needs to support

– Code structure is the code abstractions from which the system is built
– Concurrency structure is the representation of logical concurrency among the

components of the system
– Physical structure is just that, the structure of the physical components of the

system
– Developmental structure is the structure of the files and the directories

identifying the system configuration as the system evolves

• Using architectural structures to understand quality
– Concurrency and Physical structures are useful in understanding system

Performance
– Concurrency and Code structures are useful in understanding system

Security
– Functional, Code, and Developmental structures are useful in understanding

system Maintainability Source: L. Bass and R. Kazman, Architecture-Based
Development, CMU/SEI-99-TR-007. Software Engineering
Institute, Carnegie Mellon University, April 1999.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 15 15 Software Assurance Forum, September 2010

Attribute-Driven Design

• Attribute-Driven Design (ADD) produces an initial software architecture
description from a set of design decisions that show:
– Partitioning of the system into major computational and developmental elements

– What elements will be part of the different system structures, their type, and the
properties and structural relations they possess

– What interactions will occur among elements, the properties of those
interactions, and the mechanisms by which they take place

• In the very first step in ADD, quality attribute requirements are expressed
as the system’s desired measurable quality attributes responses to a
specific stimulus

• Knowing these requirements for each quality attribute supports the
selection of design patterns and tactics to achieve those requirements

Source: R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B.
Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023.
Software Engineering Institute, Carnegie Mellon University, November 2006.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 16 16 Software Assurance Forum, September 2010

Understanding The Consequences Of Architectural Decis ions With
Respect To Quality Attributes

• The Architecture Tradeoff Analysis MethodSM (ATAMSM) is dependent
upon quality characteristic characterizations, like those produced through
ADD, that provide the following information about each characteristic:
– The stimuli to which the architecture must respond

– How the quality attribute will be measured or observed to determine how well it
has been achieved

– The key architectural decisions that impact achieving the attribute requirement

• ATAM takes proposed architectural approaches and analyzes them
based on quality attributes
– generally specified in terms of scenarios addressing stimuli and responses

• Use case scenarios, describing typical uses of the system

• Growth scenarios, addressing planned changes to the system

• Exploratory scenarios, addressing any possible extreme changes that would stress the
system

• ATAM also identifies sensitivity points and tradeoff points
Source: R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Evaluation,
CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon University, August 2000.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 17 17 Software Assurance Forum, September 2010

The Assurance Case

• Claims made about a system’s assurance characteristics must be
supported by rational arguments to justify their belief

• In order for these arguments to be accepted, they must in turn be
supported by sufficient evidence

• The assurance case is the means for communicating to stakeholders the
degree of assurance achieved, with what confidence level, and with what
residual risk

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 18 18 Software Assurance Forum, September 2010

Customer Implications Of Quality-Attribute-Based Ar chitectural
Approaches

• Customer quality requirements will have been distilled into architectural
drivers which will have shaped the system architecture

• Tradeoffs will have been made to optimize the realization of important
quality characteristics, in concert with customer expectations

• The level of confidence that the resultant architecture will meet those
expectations will be known

• Customers will be knowledgeable of any residual risk they are accepting
by accepting the delivered system

Source: R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R.
Nord, and B. Wood, Attribute-Driven Design (ADD), Version 2.0,
CMU/SEI-2006-TR-023. Software Engineering Institute, Carnegie Mellon
University, November 2006.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 19 19 Software Assurance Forum, September 2010

Process Maturity Does Not Guarantee Product Quality

• The CMMI® embodies the process management premise that, the quality
of a system or product is highly influenced by the quality of the process
used to develop and maintain it

• However:
– Several recent program failures from organizations claiming high maturity levels

have caused some to doubt whether CMMI® improves the chances of a
successful project

Source: CMMI® for Development, Version 1.2,
CMU/SEI-2006-TR-008, Software Engineering Institute,
Carnegie Mellon University, August 2006

Source: R. Hefner. CMMI Horror Stories: When Good
Projects Go Bad. SEPG Conference, March 2006

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 20 20 Software Assurance Forum, September 2010

. . . But Engineering Discipline Might

• Process maturity can in many cases improve project performance, but
special attention to the engineering processes is required to ensure that
customer quality expectations are realized in resultant products.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 21 21 Software Assurance Forum, September 2010

A Current Concern: Architecting For System Assuranc e

• The challenge:
– Integrating a heterogeneous set of globally engineered and supplied proprietary,

open-source, and other software; hardware; and firmware; as well as legacy
systems; to create well-engineered integrated, interoperable, and extendable
systems whose security, safety, and other risks are acceptable – or at least
tolerable.

• The vision:
– The requirements for assurance are allocated among the right systems and

their critical components, and such systems are designed and sustained at a
known level of assurance.

Source: K. Baldwin. DOD Software Engineering and
System Assurance New Organization – New Vision,
DHS/DOD Software Assurance Forum, March 8, 2007

Source: P. Croll, “Engineering for System Assurance – A State of the Practice
Report,” Proceedings of the 1st Annual IEEE Systems Conference. New York:
Institute of Electrical and Electronics Engineers, April 2007

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 22 22 Software Assurance Forum, September 2010

Architectural Principles For Assurance

• Isolate critical components from less-critical components

• Make critical components easier to assure by making them smaller and
less complex

• Separate data and limit data and control flows

• Include defensive components whose job is to protect other components
from each other and/or the surrounding environment

• Beware of maximizing performance to the detriment of assurance

Source: National Defense Industrial Association
(NDIA) System Assurance Committee. Engineering
for System Assurance. Arlington, VA: NDIA, 2008.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 23 23 Software Assurance Forum, September 2010

Architectural Approaches For Assurance

• Least privilege

• Isolation/containment

• Monitoring and response for both legitimate
and illegitimate actions

• Tolerance

• Identification and authentication mechanisms

• Cryptography

• Deception

• Employ interface standards or standard
elements for which an assurance case has
been established

Source: National Defense Industrial Association
(NDIA) System Assurance Committee. Engineering
for System Assurance. Arlington, VA: NDIA, 2008.

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 24 24 Software Assurance Forum, September 2010

Summary

• If we are to be successful in delivering systems that meet customer
expectations, we must:
– Start as early as possible in the design process to understand the extent to

which those expectations might be achieved

– Define a set of quantifiable quality characteristics tied to customer expectations,
against which we can measure success

– Develop candidate system architectures and perform architecture trade-offs
using those characteristics

EVENT/CLIENT NAME or Confidentiality statement 10/6/2010 3:13 PM 0710-09_NPS_Blue 25 25 Software Assurance Forum, September 2010

For More Information . . .

Paul R. Croll
CSC
10721 Combs Drive
King George, VA 22485-5824

Phone: +1 540.644.6224

Fax: +1 540.663.0276

e-mail: pcroll@csc.com

